Cortical neurite outgrowth and growth cone behaviors reveal developmentally regulated cues in spinal cord membranes

1999 ◽  
Vol 39 (3) ◽  
pp. 393-406 ◽  
Author(s):  
Masabumi Nagashima ◽  
Erik W. Dent ◽  
Xiu-Zhen Shi ◽  
Katherine Kalil
2017 ◽  
Vol 95 (9) ◽  
pp. 653-661 ◽  
Author(s):  
C.D. Rand ◽  
G.E. Spencer ◽  
R.L. Carlone

Retinoic acid (RA), an active metabolite of vitamin A, is important for neural development and regeneration and can induce neurite outgrowth. It may also act as a guidance molecule by attracting neurite processes during outgrowth. In the African Clawed Frog (Xenopus laevis (Daudin, 1802)), RA has been shown to play an important role in the development of the anterior–posterior axis. However, whether RA can act as a trophic or tropic molecule on embryonic neurons of this species has not been determined. In this study, we investigated the effects of two retinoid isomers, all-trans retinoic acid (atRA) and 9-cis retinoic acid (9-cisRA), on cultured embryonic spinal cord neurons of X. laevis. Both isomers significantly enhanced neurite outgrowth compared with the vehicle control. In addition, atRA induced growth cone turning, which was blocked with a retinoic acid receptor (RAR) antagonist, selective for the β receptor subtype. Immunostaining also revealed RAR immunoreactivity in the neurites and growth cones of these cells. Interestingly, the 9-cisRA isomer also induced significant growth cone turning and this response was inhibited by a retinoid X receptor (RXR) pan-antagonist. Overall, we have provided evidence for both trophic and chemotropic actions of two naturally occurring retinoid isomers on Xenopus embryonic spinal cord neurons in culture.


Author(s):  
Xiaogang Chen ◽  
Lin Zhang ◽  
Fu Hua ◽  
Yu Zhuang ◽  
Huan Liu ◽  
...  

AbstractStudies have found that molecular targets that regulate tissue development are also involved in regulating tissue regeneration. Erythropoietin-producing hepatocyte A4 (EphA4) not only plays a guiding role in neurite outgrowth during the development of the central nervous system (CNS) but also induces injured axon retraction and inhibits axon regeneration after spinal cord injury (SCI). EphA4 targets several ephrin ligands (including ephrin-A and ephrin-B) and is involved in cortical cell migration, axon guidance, synapse formation and astrocyte function. However, how EphA4 affects axon regeneration after SCI remains unclear. This study focuses on the effect and mechanism of EphA4-regulated astrocyte function in neuronal regeneration after SCI. Our research found that EphA4 expression increased significantly after SCI and peaked at 3 days post-injury; accordingly, we identified the cellular localization of EphA4 and ephrin-B ligands in neurons and astrocytes after SCI. EphA4 was mainly expressed on the surface of neurons, ephrin-B1 and ephrin-B3 were mainly localized on astrocytes, and ephrin-B2 was distributed on both neurons and astrocytes. To further elucidate the effect of EphA4 on astrocyte function after SCI, we detected the related cytokines secreted by astrocytes in vivo. We found that the levels of neurotrophic factors including nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) increased significantly after SCI (NGF peaked at 3 days and bFGF peaked at 7 days); the expression of laminin and fibronectin increased gradually after SCI; the expression of inflammatory factors [interleukin (IL)-1β and IL-6] increased significantly from 4 h to 7 days after SCI; and the levels of glial fibrillary acidic protein (GFAP), a marker of astrocyte activation, and chondroitin sulphate proteoglycan (CSPG), the main component of glial scars, both peaked at 7 days after SCI. Using a damaged astrocyte model in vitro, we similarly found that the levels of related cytokines increased after injury. Consequently, we observed the effect of damaged astrocytes on neurite outgrowth and regeneration, and the results showed that damaged astrocytes hindered neurite outgrowth and regeneration; however, the inhibitory effect of injured astrocytes on neurite regeneration was reduced following ephrin-B receptor knockdown or inflammatory inhibition at 24 h after astrocyte injury. Our results showed that EphA4 regulates the secretion of neurotrophic factors, adhesion molecules, inflammatory factors and glial scar formation by binding with the ligand ephrin-B located on the surface of astrocytes. EphA4 affects neurite outgrowth and regeneration after SCI by regulating astrocyte function.


2009 ◽  
Vol 220 (2) ◽  
pp. 303-315 ◽  
Author(s):  
Jose V. Montoya G. ◽  
Jhon Jairo Sutachan ◽  
Wai Si Chan ◽  
Alexandra Sideris ◽  
Thomas J.J. Blanck ◽  
...  

2020 ◽  
Vol 21 (19) ◽  
pp. 7031
Author(s):  
Zhuo-Hao Liu ◽  
Yin-Cheng Huang ◽  
Chang-Yi Kuo ◽  
Chao-Ying Kuo ◽  
Chieh-Yu Chin ◽  
...  

Spinal cord injury (SCI) is associated with disability and a drastic decrease in quality of life for affected individuals. Previous studies support the idea that docosahexaenoic acid (DHA)-based pharmacological approach is a promising therapeutic strategy for the management of acute SCI. We postulated that a nanostructured material for controlled delivery of DHA at the lesion site may be well suited for this purpose. Toward this end, we prepare drug-loaded fibrous mats made of core-shell nanofibers by electrospinning, which contained a polylactic acid (PLA) shell for encapsulation of DHA within the core, for delivery of DHA in situ. In vitro study confirmed sustained DHA release from PLA/DHA core-shell nanofiber membrane (CSNM) for up to 36 days, which could significantly increase neurite outgrowth from primary cortical neurons in 3 days. This is supported by the upregulation of brain-derived neurotropic factor (BDNF) and neurotrophin-3 (NT-3) neural marker genes from qRT-PCR analysis. Most importantly, the sustained release of DHA could significantly increase the neurite outgrowth length from cortical neuron cells in 7 days when co-cultured with PLA/DHA CSNM, compared with cells cultured with 3 μM DHA. From in vivo study with a SCI model created in rats, implantation of PLA/DHA CSNM could significantly improve neurological functions revealed by behavior assessment in comparison with the control (no treatment) and the PLA CSNM groups. According to histological analysis, PLA/DHA CSNM also effectively reduced neuron loss and increased serotonergic nerve sprouting. Taken together, the PLA/DHA CSNM may provide a nanostructured drug delivery system for DHA and contribute to neuroprotection and promoting neuroplasticity change following SCI.


Sign in / Sign up

Export Citation Format

Share Document